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The difference between using the best possible lineup 
and worst possible lineup is as much as four wins in a 
season. Before our work, it was thought to be much less.

Trades can be modeled in a straightforward way by 
swapping players’ transition matrices to their new teams. 
We showed that a fairly good home run hitter is much 
more valuable (in terms of team wins expected) than an 
excellent singles hitter.

We verified the claim in Michael Lewis’s book Money-
ball that replacing several strong and weak hitters with 
an equal number of average hitters should lead to similar 
performance. 

Our model has been used to determine whether a 
game is worth wagering on, depending on the payoff (for 
entertainment purposes only, of course). It has been used 
to compute the relative value of highly paid players, av-
erage paid players, and the lowest paid players (in work 
performed with undergraduate student Iman Kazerani). 
We have also used the method to evaluate who should win 
baseball’s Most Valuable Player and Cy Young Awards—
which player would have added the most wins to a team 
of average players that season (in work with Kevin Fritz, 
a high school student at the time [2]).

First attempts. In the late 1980s I attempted with brute 
force to compute expected baseball scores from hitting 
data. At that time it wasn’t easy to obtain much baseball 
data beyond “at bats,” hits, doubles, triples, home runs, 
outs, and walks for batters, and wins, losses, strike outs, 
innings pitched, home runs, hits and 
walks allowed, and earned run aver-
ages for pitchers. A key consideration 
in modeling baseball is that the order 
of events matters: a single followed by 
a home run yields two runs, while the 
reverse yields just one run immedi-
ately. Reducing the batting data to the 
probability of just six events—walks, 
singles, double, triples, home runs, 
and outs—and using a simple model 
for runner advancement (to be described later), I pro-
grammed a computer to enumerate all possible sequences 
of events that the lineup could experience to get to 27 
outs. I quickly learned that analyzing a single lineup would 
take many years. Since about 40 plate appearances occur 
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for a team in a typical 9-inning game, over 640 sequences 
would have to be analyzed for a given lineup. This would 
have taken more than a quadrillion years on a late 1980s 
computer. I learned that brute force methods may be easy 
to code but impossible to run in reasonable time. I needed 
to streamline the computation.

A Markov process model. Several researchers (e.g. 
Bellman [1] and Trueman [4]) had considered baseball 
as a Markov process in order to study managerial deci-
sion-making, such as when bunting or stealing is worth-
while. In a Markov process, the probability of the next 
state depends only on the current state, not on the history. 
In baseball there are 3 x 8 + 1 = 25 states for the batting 
team: 0, 1, or 2 outs times 8 base-runner situations (no 
one on base, man on first, … , bases loaded) plus the final 
“absorbing” 3-out state. For every batter, pitcher, and 
perhaps other factors, we can develop a 25x25 matrix 
representing the transition probability of moving from 
one of these states to another. 

For demonstration purposes, we make certain simpli-
fying assumptions:

(1) on a walk, runners advance if forced; 
(2) on a single, a runner on first advances to second  

          base while other runners score; 
(3) on a double, a runner on first base advances to third  

          base and other runners score; 
(4) on a triple, all base runners score; 

(5) on a home run, all base runners and the batter score;  
          and

(6) on an out, runners do not advance.
The transition matrix, P, can be written:

where 

B = Pout I8 ; C = 08x8 ; D = 08 ; E = 08 ; F = Pout. 
Here PW, PS, PD, PT, PH, Pout are the probabilities of the batter 
walking, and getting a single, double, triple, home run, or 
out, respectively, and must sum to 1. I8 is the 8x8 identity 
matrix. Superscripts indicate the number of runs, if any, 
scored on the particular transition. D, E, and F are column 
vectors with 8 entries representing transitions arising 
from going from zero outs to three outs (triple plays), 
from one out to three outs (double plays), and from two 
outs to three outs, respectively. Since we ignore double and 
triple plays, the C, D, and E submatrices are all zero. The 

Figure 1. For 2017 the method correctly projected all of the division winners but no wild card teams.

Team Projected Actual

  HOU 94 101

  ANA 79 80

  SEA 80 78

  TEX 80 78

  OAK 78 75

Team Projected Actual

  BOS 91 93

  NYY 80 91

  TB 76 80

  TOR 90 76

  BAL 77 75

Team Projected Actual

  CLE 99 102

  MIN 69 85

  KC 74 80

  CHW 64 67

  DET 86 64

Team Projected Actual

  LAD 104 104

  ARI 69 93

  COL 83 87

  SD 53 71

  SF 95 64

Team Projected Actual

  WSH 97 97

  MIA 72 77

  ATL 74 72

  NYM 92 70

  PHI 69 66

Team Projected Actual

  CHC 104 92

  MIL 71 86

  STL 88 83

  PIT 80 75

  CIN 62 68
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Recent years have seen a great increase in appreciation 
for the utility of math and statistics to improve team per-
formance, and MLB teams are reported to have developed 
statistics and analytics groups. New technologies have led 
to new metrics. The model described above can indirectly 
incorporate the influence of new metrics like launch an-
gles, exit velocity, and opportunity time.

Through this work I have been able to bring an appre-
ciation of the value of math to a wide group of people: 
batting orders and win probabilities interest far more 
people than my research in detonation theory. I’ve gained 
experience speaking to the media, learning just to promote 
math’s value and power and to avoid getting bogged down 
in the statistical nuances. I have used math modeling of 
baseball as a hook to recruit students to pursue math 
majors and minors and have provided high school and 
college students with research opportunities, leading to 
several papers and presentations with students. Recently 
an undergraduate student, Kelvin Rivera, performed an 
independent study project demonstrating that our model 
could be used for football, something for decades I didn’t 
think could work. You never know the next amazing in-
sight you’ll get from pursuing math modeling.
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A submatrix represents 
transitions where no 
outs occur. The first 
row of A represents 
transitions from no 
one on to no one on, 
man on first, man on 
second, man on third, 
men on first and sec-
ond, men on first and 
third, men on second 
and third, and bases 
loaded, respectively. 
The other rows of A 
represent transitions to 
these states from man 

on first, man on second, etc. The “1” on the bottom corner 
represents the absorbing 3-out state.

Games start with no one on and no one out, which we 
represent by a row vector, U, with 25 entries—the first is 
1 and the rest are zero. By multiplying UP1 we find the 
probability of being in any situation after the first batter’s 
plate appearance. Multiplying the resulting row vector by 
P2 gives the probabilities after the second batter. (Here P1, 
etc. represent the transition matrix for the batter in that 
position in the lineup). Going through the lineup in this 
manner and keeping track of runs scored and returning 
to the no on, no out state when 3 outs are reached and 
keeping track of the inning, gives the probability of the 
lineup scoring 0, 1, 2, ... runs during the 9-inning game. 

The structure given above allows for tremendous flexi-
bility. One may revise the runner advancement model, for 
example by considering that, on a single, a runner on first 
may stop at second, or at third, or even score or be thrown 
out; so the probability of getting a single can be partitioned 
based on actual or model data. Researchers (e.g. Hirotsu 
and Wright [3]) have included dependence on balls, strikes, 
inning, or score leading to transition matrices with over 
one million rows and columns. Finding sufficient data to 
set the entries of such a transition matrix appropriately 
may be problematic.

Using the method above improved the very long brute 
force computation method from quadrillions of years 
down to under 1.5 seconds in the early 1990s. Other 
researchers have included dependence on balls, strikes, 
inning, or score. These analyses lead to transition matrices 
with over one million rows and columns. Yet, the structure 
described above, with the 25x25 core transition matrix for 
each batter, yields many interesting results, including, for 
example, about optimal line-ups. One manager quipped 
that he would use all possible lineups in spring training 
and then decide which one to use during the season; 
for nine batters, there are 9!=362,880 possible lineups. 
Clearly, this is not possible. Computing the expected 
number of runs for each lineup shows that the best pos-
sible lineup should have the “slugger” bat second or third 
and the pitcher (who is part of the lineup in the National 
League) bat seventh or eighth.
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