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Abstract 

Over the past decade, mixed integer linear programming (MILP) has become the preferential way to 

solve unit commitment problems for electricity generation. However, as this paper demonstrates, this 

method faces increasing computational difficulty when the residual demand (i.e., original demand 

minus variable renewables) in a power system sinks to relatively low values. Hence, a new unit 

commitment method is developed to specifically solve problems with low residual demand. The 

algorithm is set up based on an enhanced priority list of power plants (EPL). Plants are activated 

according to this list, while schedules are adapted to respect technical restrictions as minimum up and 

down times, and minimum operating points (particularly important in a low residual demand setting). 

The developed EPL algorithm is compared to a MILP set up, first on a benchmark system and second 

on a low residual demand case. Results are compared in terms of output and computational effort. 

Performance of the EPL algorithm is very satisfying (both in terms of optimality and calculation 

speed), thereby demonstrating its usefulness for real-life simulation and policy analysis, or, e.g., to be 

used in combination with MILP solvers to provide a starting solution.  

Keywords: unit commitment; power generation scheduling; priority list; renewables; low residual 

demand 
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Nomenclature 

Sets 

I Power plants (index i; number of elements ni) 

J Time periods (index j; number of elements nj) 

L Stepwise linear segments of output cost curve (index l; number of elements nl) 

R Ranked power plants (index r) 

T Time periods, up to period j (index t; number of elements nt) 

Parameters 

A Fuels cost at minimum working point 

a, b, c Cost coefficients 

cc Cold startup cost 

D Demand 

F Slope of segment of linearized cost  

FD Weighting factor 

FMU Parameter used in up time correction 

G Generation level to be used in cost metric M 

hc Hot startup cost 

Inist Initial state 

L Lower bound of operating range 

LD Low residual demand 
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M Cost metric 

MDT Minimum down time 

MS Cost metric for startup cost 

MUT Minimum up time 

Pmax Maximum output 

Pmin Minimum working point 

R Reserves 

SC Startup cost 

T Upper limits of power segments (linearized cost function) 

tcold Offline period determining startup (hot or cold) 

U Upper bound of operating range 

Variables 

dt Down time 

fc Fuel cost 

g Generation 

sc Startup cost 

tc Total cost 

ut Up time 

z Commitment status 

δ Generation in power segment 
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Abbreviations 

EPL Enhanced Priority List 

ISO Independent System Operator 

MILP Mixed Integer Linear Programming 

PV Photovoltaics 

RES Renewable Energy Sources 

UC Unit Commitment 
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1 Introduction 

The demand and supply of electricity need to be in constant balance. As demand for electricity has a 

typical diurnal, weekly and seasonal pattern, power plants need to be carefully scheduled to meet this 

fluctuating demand. This scheduling optimization is known as the unit commitment (UC) problem and 

has been widely discussed in the literature. Traditionally, the UC problem was solved centrally, 

minimizing overall system cost. With the liberalization of electricity markets worldwide, the aim is to 

operate the electricity generation systems with higher (economic) efficiency. Focus has shifted to 

optimal economic performance and profit maximization. On the one hand, the UC problem can be 

considered from a system’s perspective, i.e., the so-called security-constrained UC [1]. This type of 

UC is similar to the traditional UC and is what an Independent System Operator (ISO) currently deals 

with. Also towards policy making and planning, this UC is useful as a tool to perform market 

simulations and assess the impact of specific measures. On the other hand, from the viewpoint of a 

single market player, a price-based UC problem can be considered, optimizing output towards 

maximum profit, based on electricity price forecasts [2]. This paper will focus on the first kind of UC, 

i.e., security-constrained UC. For the sake of simplicity, in the remainder of this paper, we will refer to 

this just as UC.  

A wide range of solution techniques for the UC problem have been proposed and developed over the 

years. Examples include priority listing (heuristics), Lagrangian relaxation, dynamic programming, 

genetic algorithms, etc., together with hybrid methods combining several of these. For an overview of 

methods, see, e.g., [3], and further in this paper. Over the past decade, especially mixed integer linear 

programming (MILP) has been put forward [4, 5].  

Electric power systems worldwide are, however, changing. To cut greenhouse gas emissions and for 

reasons of security of supply (in terms of strategic primary energy security), a massive deployment of 

renewable energy sources (RES) like wind and solar photovoltaics (PV) is currently taking place or at 

least aimed for, in certain countries (e.g., Germany) or states (e.g., California). These renewable 
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sources are characterized by a high degree of variability, i.e., they only produce electricity when the 

wind blows or when the sun shines. A further massive deployment of these intermittent renewables 

will render a net or residual load profile (as seen by the conventional dispatchable power plants) that is 

both lower and more volatile1. As will be demonstrated in this paper, computation times of MILP UC 

models increase heavily when (residual) demand levels are low compared to the overall system size. 

Hence, the aim of this paper is to set up an adequate UC optimization tool that is able to cope with 

variable and low net demand profiles in an efficient way.  

Such model is relevant for several market parties, all with their specific objectives. It can for example 

serve as an algorithm in market simulation exercises for planning purposes, e.g., by market operators. 

It is further usable for energy and climate policy evaluation and assessment, focusing on RES 

integration. Also electricity generating companies can use this kind of model, e.g., to provide 

operational solutions on relatively large sale, or use the model in combination with other techniques 

such as MILP, to provide a starting solution.  

Towards this end, a new enhanced priority list (EPL) based method is developed. Several priority list 

methods have been developed in the literature, e.g., [6-9]. These have a main focus on computational 

speed and on increasing the level of optimality. However, these models are typically not directly 

suited to be used in settings with low residual load (where minimum load problems occur, or 

downward reserves become relevant). Furthermore, as far as the impact of intermittent RES (e.g., 

wind) on generator scheduling algorithms is concerned, the focus in the literature has been mainly on 

dealing with the uncertainty (see, e.g., [10, 11]). The issue of increasing computational effort for 

systems with low residual demand has not really been addressed so far.  

Hence, in this paper, a new UC method is developed specifically for low residual demand settings.  As 

will be demonstrated, this new EPL based algorithm extends existing priority list methods such as, 

e.g., [9], not only regarding computational efficiency, but especially regarding feasibility for low 

residual load problems. 

                                                      
1 Residual demand is the load to be covered by the centralized (i.e., dispatchable) system; it equals the total 
demand minus generation by e.g., wind and solar PV. 
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This paper proceeds as follows. The next section presents the basic formulation of the UC problem. 

The third section describes the algorithm of the newly developed EPL method. The fourth section 

provides the input data used in the simulations. Numerical results are then presented in the fifth 

section. In a first case, the MILP and EPL models are used on a benchmark system. In a second step, a 

specific low load case is set up and optimized (again both with MILP and EPL). The difficulties faced 

by MILP to solve such problems are demonstrated, while the adequate performance of the EPL 

method is shown. The final section concludes.  

2 Problem formulation  

A basic cost based unit commitment optimization problem is considered. This problem has been 

described widely in the literature. The description as presented below is partly based on [4].  

The objective to be minimized is the total generation cost tc, which is equal to the sum of fuel costs fc 

and startup costs sc over all power plants i and all time periods j (in this case hourly time steps): 

ܿݐ			݁ݖ݅݉݅݊݅݉ ൌ ∑ ݂ܿሺ݅, ݆ሻ௜,௝ ൅ ∑ ,ሺ݅ܿݏ ݆ሻ௜,௝    (1) 

The fuel cost of a power plant is typically a quadratic function of its output g and commitment status z 

(with a, b and c the cost coefficients, I the set of power plants and J the set of time periods) [12]: 

݂ܿሺ݅, ݆ሻ ൌ ܽ௜ ∙ ,ሺ݅ݖ ݆ሻ ൅ ܾ௜ ∙ ݃ሺ݅, ݆ሻ ൅ ܿ௜ ∙ ݃ሺ݅, ݆ሻଶ,			∀݅ ∈ ,ܫ ∀݆ ∈  (2)   ܬ

This (convex) quadratic cost function can be linearized by a number of stepwise linear segments (set 

L, index l). Let Pmax and Pmin be the maximum and minimum power output (if online) respectively, 

A the fuel cost at minimum output, Fl the slope of the cost function of segment l, and Tl the upper 

bound power limit of each segment (note that in this case for the last segment nl: Tnl = Pmax). With δ 

the actual generated power in each segment l, the fuel cost and generation limits are set by the 

following equations: 

݂ܿሺ݅, ݆ሻ ൌ ௜ܣ ∙ ,ሺ݅ݖ ݆ሻ ൅ ∑ ௜,௟ܨ ∙ ,ሺ݅ߜ ݆, ݈ሻ,			∀	݅ ∈ ,ܫ ∀	݆ ∈ ௟ܬ   (3) 

݃ሺ݅, ݆ሻ ൌ ܲ݉݅݊௜ ∙ ,ሺ݅ݖ ݆ሻ ൅ ∑ ,ሺ݅ߜ ݆, ݈ሻ,			∀	݅ ∈ ,ܫ ∀	݆ ∈ ௟ܬ    (4) 
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݃ሺ݅, ݆ሻ ൑ ௜ݔܽ݉ܲ ∙ ,ሺ݅ݖ ݆ሻ,			∀	݅ ∈ ,ܫ ∀	݆ ∈  (5)    ܬ

,ሺ݅ߜ ݆, ݈ሻ ൑ ௜ܶ,௟ െ ௜ܶ,௟ିଵ,			∀	݅ ∈ ,ܫ ∀	݆ ∈ ,ܬ ∀	݈ ൌ 2…݈݊   (6) 

,ሺ݅ߜ ݆, ݈ሻ ൑ ௜ܶ,௟ െ ܲ݉݅݊௜,			∀	݅ ∈ ,ܫ ∀	݆ ∈ ,ܬ ݈ ൌ 1    (7) 

,ሺ݅ߜ ݆, ݈ሻ ൒ 0,			∀	݅ ∈ ,ܫ ∀	݆ ∈ ,ܬ ∀	݈ ∈  (8)    ܮ

Parameter Ai is the cost [$/h] at minimum output, and determined as 

௜ܣ ൌ ܽ௜ ൅ ܾ௜ ∙ ܲ݉݅݊௜ ൅ ܿ௜ ∙ ܲ݉݅݊௜
ଶ,			∀݅ ∈ ,ܫ ∀݆ ∈  (9)  ܬ

The commitment status z is a binary variable: 

,ሺ݅ݖ ݆ሻ ∈ ሼ0,1ሽ,			∀	݅ ∈ ,ܫ ∀	݆ ∈  (10)    ܬ

The startup cost is a function of the time t the plant has been offline, previous to the startup. This is 

implemented as follows, with parameter SCt presenting the startup cost if previously shut down for t 

hours (set T):  

,ሺ݅ܿݏ ݆ሻ ൒ ௜,௧ܥܵ ∙ ሾݖሺ݅, ݆ሻ െ ∑ ,ሺ݅ݖ ݆ െ ݊ሻ௧
௡ୀଵ ሿ,			∀	݅ ∈ ,ܫ ∀	݆ ∈ ,ܬ ݐ	∀ ∈ ܶ  (11) 

,ሺ݅ܿݏ ݆ሻ ൒ 0,			∀	݅ ∈ ,ܫ ∀	݆ ∈  (12)    ܬ

During all time periods j, the sum of the power generated g of all the power plants should be equal to 

the demand Dj: 

∑ ݃ሺ݅, ݆ሻ ൌ ݆∀			,௝ܦ ∈ ௜ܬ      (13) 

Furthermore, a certain amount of system reserves Rj need to be present in the system, both up- and 

downwards: 

∑ ௜ݔܽ݉ܲ ∙ ,ሺ݅ݖ ݆ሻ ൒ ௝ܦ ൅ ௝ܴ,			∀݆ ∈ ௜ܬ    (14) 

∑ ܲ݉݅݊௜ ∙ ,ሺ݅ݖ ݆ሻ ൑ ௝ܦ െ ௝ܴ,			∀݆ ∈ ௜ܬ    (15) 

Finally, the minimum up and down times (MUT and MDT, respectively) are imposed as follows: 
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,ሺ݅ݖ ݆ሻ െ ,ሺ݅ݖ ݆ െ 1ሻ െ ,ሺ݅ݖ ݆ ൅ ݊ሻ ൑ 0,			∀	݅ ∈ ,ܫ ∀	݆ ∈ ,ܬ ∀	݊ ൌ ܷܯ…1 ௜ܶ െ 1 (16) 

,ሺ݅ݖ ݆ െ 1ሻ െ ,ሺ݅ݖ ݆ሻ ൅ ,ሺ݅ݖ ݆ ൅ ݊ሻ ൑ 1,			∀	݅ ∈ ,ܫ ∀	݆ ∈ ,ܬ ∀	݊ ൌ ܦܯ…1 ௜ܶ െ 1 (17) 

Note that corrections need to be made to these equations for the start (initial conditions) and the end of 

the considered time interval (set J). The UC problem consists of the objective (1) and the constraints 

(3)-(17). 

3 Enhanced priority list (EPL) based algorithm  

To solve the UC problem as outlined in the previous section, two methods are used. A MILP model is 

set up, basically by direct implementation of the equations from Section 2. Second, a new model is 

developed based on enhanced priority listing (EPL), specifically focusing on low demand issues. This 

section presents this newly developed algorithm. The algorithm comprises of different steps, which are 

sequentially passed through. These steps are presented in Figure 1 and are subsequently discussed 

below. 

[Figure 1 about here] 

3.1 Ranking of power plants 

In the considered UC problem, fuel costs and startup costs are taken into account. The fuel cost is 

dependent on the power plant’s output, and is described by a quadratic cost function. Hence, there is 

no single marginal or average operational cost for a power plant. As a criterion for the ranking of 

power plants, one could take the average cost of the power plant at its minimal working point, at its 

maximum power output, or indeed anywhere in between. According to the chosen metric, a different 

stacking order can be obtained. This is illustrated in Figure 2. The cost curves of two different power 

plants are presented (these correspond to plants 4 and 5, respectively, from the system as used further 

in the simulations). The segments for the stepwise linear approximation are also indicated (8 

segments). One can see that if the average cost at minimum output is chosen as metric (slope of the 

steepest dashed and dotted lines), plant 5 is preferred over plant 4 (i.e., listed first). However, if one 

opts for the average cost at maximum output, the order reverses. To some extent, the choice of the 
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metric should be based on the expected operating point of a power plant on the margin, i.e., where the 

order will have an important impact. In our model, the metric is initially set equal to the average cost 

in the middle of the operating range of the power plant (i.e., the slope from the origin to the fifth 

marker in the figure). This cost metric is denoted M and expressed as follows: 

௜ܯ ൌ
௔೔ା௕೔∙ீ೔ା௖೔∙ ೔ீ

మ

ீ೔
,			∀݅ ∈  (18)     ܫ

with 

௜ܩ ൌ ቀ௉௠௔௫೔ା௉௠௜௡೔
ଶ

ቁ,			∀݅ ∈  (19)    ܫ

[Figure 2 about here] 

If startup costs are relatively high compared to fuel cost, the metric Mi could be complemented with a 

term accounting for startup costs. If turned on, a power plant needs to be online for at least the 

minimum up time MUTi. Based on an average startup cost, and assuming a certain generation output 

Gi, the term accounting for startup costs in the metric could be (with nt the number of elements in set 

T): 

ܯ ௜ܵ ൌ
൫∑ ௌ஼೔,೟

೙೟
೟సభ ൯/௡௧

ெ௎்೔∙ீ೔
,			∀݅ ∈  (20)    ܫ

This term MSi would have to be added to Mi as defined above in (18). Because of the modest startup 

costs in the considered data, this has not been applied in the present model. According to the chosen 

metric, power plants are now ranked (indexed r) with a basic sorting algorithm. This is the priority list.  

3.2 Set up lower and upper bound 

According to the ranking established in the previous step, a series of power intervals is determined, 

based on the power plant’s minimum and maximum output. Let r be the index of the ranked power 

plants (the first one is the cheapest one, the last one the most expensive). If all plants up to the rth plant 

would be activated in a certain hour, their operating range is [Lr,Ur], with 

௥ܮ ൌ ∑ ܲ݉݅݊௡
௥
௡ୀଵ ݎ∀			, ൌ 1…݊݅    (21) 
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௥ܷ ൌ ∑ ௡ݔܽ݉ܲ
௥
௡ୀଵ ݎ∀			, ൌ 1…݊݅    (22) 

L is the cumulative sum of the minimum power output (according to the stacked list), U presents the 

cumulative sum of the maximum power output and ni is the number of elements in set I. The intervals 

determined by these two vectors will be used in the following step of the algorithm, to determine 

appropriate power plant activation levels.  

3.3 Activation of the power plants  

For every hour, the interval [Lr,Ur] with lowest index r is determined, which comprises both the 

demand minus the reserves (accounting for downward reserves requirement) and the sum of the 

demand and reserves (accounting for the upward reserves requirement) during that hour. I.e., the 

minimum r for which the following two equations hold is to be found: 

௥ܮ ൑ ௝ܦ െ ௝ܴ,			∀݆ ∈  (23)     ܬ

௝ܦ ൅ ௝ܴ ൑ ௥ܷ,			∀݆ ∈  (24)     ܬ

The power plants up to this level r are activated. This way the minimum number of power plants that 

is required, is activated each hour.  

Note that in sufficiently large systems, with a sufficiently high demand, such interval [Lr,Ur] should 

normally be found. If demand levels drop, however, it could be that no feasible interval exists. Hence, 

to deal with low load systems, this algorithm is extended as follows. If no interval is found, the last 

interval r with Ur still lower than the demand and reserve is started from, with these r plants being 

activated. According to the stacking order, the algorithm now tries to identify the first next plant that 

can be activated, ensuring that if this plant is activated, both the demand minus reserves and the sum 

of demand and reserve are situated between the summed minimum and maximum output of all 

activated plants. Hence, this plant will not be the plant on position r+1, because initially no feasible 

interval was found. If no single plant fits this search requirement, this algorithm is iteratively repeated, 

each time identifying and activating a plant in a similar way.  
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3.4 Correction of minimum up and down time violations 

The corrections for minimum up and down time are carried out in three different steps. These are 

subsequently discussed below. Before each step, the actual up times ut(i,j) and down times dt(i,j) of all 

power plants are calculated and updated2.  

Step 1. If a power plant is online for a number of periods lower than a certain factor FMU multiplied 

by the plant’s minimum up time MUT, it is shut down3.  

Step 2. A correction for minimum down times is carried out. If a plant is offline for a number of time 

periods lower than the minimum down time, the plant is brought online in these periods if this is 

feasible regarding the minimum operating point. I.e., demand (minus reserve requirement) in these 

periods must be higher than the sum of the minimum operating points (lower bound) of the activated 

power plants (comprising the considered plant). If this is not the case (lower demand), the plant is not 

activated but shut down in additional hours (towards end), to respect the minimum down time MDT. 

Step 3. A correction for minimum up times is carried out. If a plant is online for a number of time 

periods lower than the minimum up time, the plant is brought online in additional periods, if this is 

feasible both regarding the power system’s cumulative minimum power (lower bound) and the new 

down times. In a first try, the activation of the power plant is extended in a symmetric way (i.e., both 

in hours before and after the originally activated periods). If this is not possible (due to violation of the 

restrictions above), a second try is undertaken to extend the activation towards the end, or, if still not 

feasible, towards the front. If none of these work out, the plant is shut down in the periods where the 

initial up time was too low.  

[Figure 3 about here] 

                                                      
2 A straightforward algorithm is implemented towards this end. This algorithm basically counts the number of 
periods that a plant is on- or offline. If plant i is online, the variable ut(i,j) is equal to the number of periods the 
plant is subsequently online and the variable dt(i,j) is zero. E.g., if a plant is online for 5 hours, the variables 
ut(i,j) during these periods all have a value of 5. If a plant i is offline during period j, the variable dt(i,j) presents 
the number of hours the plant is offline, while ut(i,j) is zero.  
3 FMU must lie between 0 and 1, and is determined based on an iterative optimization (by varying this 
parameter, and comparing the final objective value). This parameter cannot be too high (too many power plants 
will be shut down in this step) nor too low (it will have no effect). After an iterative optimization, this factor 
FMU is set at 0.3. 
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A schematic flow diagram of these different steps is presented in Figure 3. After going through all 

three steps, all up and down times of the plants are feasible and the cumulative minimum operating 

point (lower bound) is respected. It could, however, be that during certain hours not enough plants are 

committed to satisfy the demand and reserve requirement. The next step of the overall algorithm 

(explained in Section 3.5) will take care of this.  

3.5 Activation of additional power plants if needed 

After the previous step where plants have been potentially shut down, it could occur that during 

certain hours not enough power plants are online to meet the demand and reserve requirement. 

Therefore, in this step, additional power plants are brought online in these cases.  

The hours with a shortage in activated capacity are identified. In these hours, the algorithm tries to 

commit additional power plants according to the priority list, ensuring feasibility regarding the 

minimum operating points and up and down times. If a power plant is brought online, it needs to be on 

for at least its MUT, while the down times that are also affected, need to stay feasible as well. 

Furthermore, during the additional activated periods, the cumulative minimum operating point (lower 

bound) needs to be respected. The algorithm basically subsequently (according to priority list) checks 

for all plants that are off whether they can be turned on given the restrictions above. If a plant is found, 

it is activated. The hours with a shortage in activated capacity are updated and the algorithm is 

repeated. This way, enough power is committed in each hour (e.g., it could be that in certain hour 

multiple power plants need to be activated).  

If during a shortage hour no plant can be activated, the last activated plant (according to the priority 

list) is shut down, i.e., it is shut down for MDT periods4, and if the affected up times are lower than the 

MUT, it is shut down in these periods as well. The search is then repeated for that hour, with the plant 

that has been shut down now not being allowed to turn on again.  

3.6 Shutting down excess power 

                                                      
4 If there is an adjacent down period, it is only turned off in this specific hour, as feasibility regarding MDT is 
then automatically ensured.  
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In this step, two algorithms are run to turn off power plants that are not required if this leads to a better 

solution. Such a shutdown can only take place if the new solution still respects the MUT and MDT 

constraints. 

Shut down power plant over entire activated range 

This algorithm runs over all the power plants, starting with the most expensive plant (last one), then 

moving up in the priority list up to the first plant. For every plant, it is checked whether there are time 

periods where the plant is scheduled on, and whether during these hours, the other activated power 

plants are able to meet the demand and reserve requirement: 

∀݅ ∈ ݆	find	,ܫ ∈  :satisfies	that	ܬ

,ሺ݅ݖ ݆ሻ ൌ 1		ܽ݊݀		 ∑ ௡ݔܽ݉ܲ ∙ ,ሺ݊ݖ ݆ሻ
௡௜
௡ୀଵ െ ௜ݔܽ݉ܲ ൒ ௝ܦ ൅ ௝ܴ  (25) 

If a set of subsequent time periods j is found, and if it is bounded by z equal to zero on both sides 

(right before and after the interval), the plant is shut down during these hours, if the overall cost of this 

new solution is lower than the original one (for cost determination, see next step). This way, no 

violations against the MUT and/or MDT constraint can be triggered. A plant can only be turned off 

during a previously entire set of activated periods, bounded by zeros.  

Shut down power plant during specific selected hours 

In contrast to the previous algorithm running over plants, this algorithm runs over the time periods. A 

backward loop (starting at the last period running towards the first one) is executed first, while the 

entire algorithm is performed again in a forward loop afterwards (starting at the first period running up 

to the last one). For every time period, the algorithm identifies power plants that meet the following 

conditions: the plant is on; the plant is off in the following period (backward loop) or off in the 

previous period (forward loop); the rest of the activated power plants is able to meet the demand and 

reserve constraint; the up time is strictly larger than the minimum up time. Mathematically, this results 

in: 
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∀݆ ∈ ݅	find	,ܬ ∈  :satisfies	that	ܫ

,ሺ݅ݖ ݆ሻ ൌ 1     (26) 

,ሺ݅ݖ ݆ ൅ 1ሻ ൌ 0	ሺbackward	loopሻ		ݎ݋	ݖሺ݅, ݆ െ 1ሻ ൌ 0	ሺforward	loopሻ   (27) 

∑ ௡ݔܽ݉ܲ ∙ ,ሺ݊ݖ ݆ሻ
௡௜
௡ୀଵ െ ௜ݔܽ݉ܲ ൒ ௝ܦ ൅ ௝ܴ   (28) 

,ሺ݅ݐݑ ݆ሻ ൐ ܷܯ ௜ܶ    (29) 

If a power plant i is found that satisfies these constraints, the fuel costs during the considered hour j 

are calculated for the case with this plant on and for the case where the plant is turned off (in this case 

a term accounting for a startup cost increase needs to be added if a cold start is triggered instead of hot 

start, because of this shut down). If the latter is cheaper, the plant is turned off during this specific 

hour. If it is not beneficial to turn the plant off, it stays on.  

If during a specific hour multiple plants are found respecting the constraints listed above, the cost 

differences are calculated for a shutdown of all of these plants individually. The shutdown of the 

power plant that yields the highest cost reduction (if any) is retained, while the algorithm is executed 

again for this same hour, as it might be beneficial to turn off more than one plant.  

This algorithm cannot trigger violations regarding minimum up and down times. The variable z is only 

adjusted from 1 to zero if it is adjacent to at least another zero (thereby only extending a previously 

feasible down time) and if the up time was strictly larger than the minimum one. 

3.7 Dispatching of activated power plants and calculating the cost 

In this final step the actual power generation level of each plant is determined, together with the fuel 

and startup costs. For every hour, the plants are dispatched as follows. First, the generation of all 

activated power plants (z = 1) is set at their minimum generation output Pmin. Second, the marginal 

costs of the linearized segments (see above) of all the activated power plants are put in a single list and 

ranked. Given convex cost functions, this ranking is used to subsequently fill up these segments, until 
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overall generation is equal to the demand. Afterwards, the actual fuel cost is calculated with the 

original quadratic cost functions, and startup costs are determined (based on the down times). 

4 Data description 

The input data are presented in Table 1 [13]. A ten-unit generation system is considered, which will 

also serve as a basis to construct larger systems. These data have been used extensively in the 

literature to test a wide set of algorithms.  

[Table 1 about here] 

Inist presents the initial state of the power plant, previous to the time frame considered in the 

optimization. A positive number indicates an up time, while a negative number indicates a down time. 

The startup cost is modeled as a stepwise cost function with two steps, i.e., a cold (cc) and a hot start 

(hc). If a power plant is offline for more than the sum of the parameter tcold and the minimum down 

time (MDT), a cold startup is required, with a cost equal to cc. If the down time is shorter or equal to 

this sum, a hot start can take place (hc). This results in: 

௜,௧ܥܵ ൌ ݄ܿ௜,			∀	݅ ∈ ,ܫ ݐ	∀ ൌ 1… ௜݈݀݋ܿݐ ൅ ܦܯ ௜ܶ   (30) 

௜,௧ܥܵ ൌ ܿܿ௜,			∀	݅ ∈ ,ܫ ݐ	∀ ൐ ௜݈݀݋ܿݐ ൅ ܦܯ ௜ܶ   (31) 

A 24-hour time frame is considered. The demand is presented in Table 2, , while the reserve 

requirement is equal to 10% of the hourly demand [13]. 

[Table 2 about here] 

5 Numerical simulation 

The EPL algorithm is implemented entirely in Matlab [14]. The MILP model (formulation partly 

based on the model described in [4]) is implemented in Matlab [14] and GAMS [15], and uses the 

Cplex 12.2 solver [16]. Simulations are run on an Intel® Core(TM) i7-2620M CPU @2.7GHz 

computer with 8 Gb of RAM. In a first step, a reference (benchmark) case is considered, with the data 
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as presented in Section 4. In a second case, the reference case is adjusted towards a system facing low 

residual demand. The EPL and the MILP method are used on this setting and results are compared.  

5.1 Benchmark case 

The system as described in Section 4 is used, in a 10, 20, 40, 60, 80 and 100 unit- setting. Each system 

is composed of the appropriate number of copies of the original 10 unit system5, with the demand 

profile scaled accordingly. This test system, originally set up in [13], has been used extensively in the 

literature, to test a wide range of algorithms, see, e.g., [4, 7, 8, 10, 13, 17-29]. In this benchmark case, 

only upward reserves are considered (consistent with the literature). As stated previously, the reserve 

requirement is set to 10% of the demand. 

The results of the EPL method and the MILP model are presented in Table 3. The MILP model is run 

with an optimality gap6 of zero (effectively proven optimality) for the systems of ten up to 40 units7, 

and with an optimality gap of 0.5% for all systems (10 up to 100 units). The calculation times of both 

models are also presented in Table 3. It can be seen that the EPL has very low calculation times for all 

systems, while these of the MILP in 0.5% optimality setting stay within reasonable limits as well. If 

strict optimality is required (zero optimality gap), MILP faces higher calculation times, reaching the 

time limit of 3600 s with a system of 60 power plants.  

[Table 3 about here] 

As can be seen from Table 3, the EPL method turns out to be highly effective. It is fast while it 

provides solutions which are very close to optimal.  

5.2 Low residual load case 

Especially in the framework of high RES penetration, low residual demand (as seen by the 

dispatchable power plants) might occur more frequently. The EPL algorithm is specifically designed 

                                                      
5 The original system is identically duplicated (with the same power plant characteristics). 
6 MILP solvers can terminate when a feasible solution is found which lies within a predefined range (i.e., the 
optimality gap) of a current best relaxed bound. This solution is then proven to be within this range close to 
optimal.  
7 For the 60 power plant system or higher, the optimal solution could not be found within the imposed time limit 
of 3600 sec. 
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to deal with low load and puts a high focus on technical feasibility in this regard (e.g., minimum 

operating constraints).  

The demand level from the reference case is adapted to a low demand pattern, denoted LD. The 

demand is modified by subtracting a certain term. This term could represent a wind front passing by in 

combination with an amount of other intermittent RES like solar PV. This term is made very generic 

and based on a sine function, being zero at the beginning and end of the considered time interval, 

reaching a peak in the middle between. 

௝ܦܮ ൌ ௝ܦ െ ܦܨ ∙ ܦ ∙ sin ቀ
ሺ௝ିଵሻ∙గ

௡௝ିଵ
ቁ,				∀݆ ∈  (32)   ܬ

FD is a weigh factor, D is the minimum value of the demand Dj, and nj is the number of time periods 

considered. Next to the 1 day profile, also a 5 day setting is applied. This is constructed as 5 

subsequent copies of the 1 day profile. In this case, Eq. (32) is applied on the 5 days as a whole (i.e., nj 

in this case equal to 120). Compared to the benchmark case, downward reserves (Eq. (15)) are now 

also included (10% of demand). 

FD ranges from zero (effectively resulting in the original demand pattern) up to 1.5 in the single day 

(24h) case and from zero up to 1 in the 5 day (120 h) case. As an illustration, the demand LD is 

presented in Figure 4 and Figure 5 below, for the 1 and 5 day case respectively. Demand is shown for 

different values of FD. The generic RES profile is also shown for FD = 1. As can be seen, the 

minimum demand is close to zero when FD is at its highest values. 

[Figure 4 about here] 

[Figure 5 about here] 

Both the EPL algorithm and the MILP model (ran with an optimality gap of 0.5%) are now applied on 

these low load cases. The results are summarized in Table 4, presenting the MILP calculation times, 

and the relative differences between MILP and EPL, for the different power systems (10 to 100 units), 

for a demand with FD ranging from 0 (which is effectively the reference case as discussed in the 
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previous section) up to 1.5, in steps of 0.5. Results for the one day demand and the 5 day demand case 

are presented.  

One day demand pattern 

First the one day demand pattern is considered. A first important thing to note from Table 4 is the 

steep increase of computation times of the MILP model towards lower load (higher FD). This increase 

is even higher than the increase of moving towards larger systems8. This clearly demonstrates the 

difficulty MILP models have in solving low load problems. In high or medium load situations, the 

large (mostly least-flexible) power plants are typically used in base-load mode, meaning they are 

committed continuously. The optimization of the commitment of more expensive power plants 

constitutes the actual computational effort. These are, however, typically the smaller and the more 

flexible plants, with lower (absolute) minimum operating points and minimum up and down times. At 

low demand, on the other hand, only few plants are required, moving the optimization towards these 

larger and less flexible cheaper plants, making it more difficult to determine feasible/optimal 

solutions.  

The EPL algorithm is in this case run with 3 different values for the cost metric (Gi in Mi), i.e., at the 

beginning, in the middle and at the end of the fuel cost curve. The best solution of the three 

simulations is each time retained9. The calculation time of a single simulation stays overall well below 

0.1 s, meaning that this way of optimization basically takes no more than 0.3 s . Hence, compared to 

MILP, the EPL method has drastically lower computation times (for the sake of brevity, these are not 

displayed in Table 4).  

Table 4 also presents the relative differences in outcome (total cost) between the two algorithms. As 

can be seen from these results, the performance of the EPL slightly decreases towards lower load. The 

higher relative deviations at lower load are at least partly explained by the fact that the same absolute 

                                                      
8 The computation time of MILP problems typically scales to some extent exponentially with problem size 
(number of binary variables). 
9 The reason for this way of optimization is to use/test different stacking orders. Dependent on the stacking 
order, the marginal plant(s) might be running more on minimum operating point (Gi = Pmini), in the middle of 
their operating range, or at full load. Hence, dependent on the load profile, it might be worth testing different 
metrics, if the fuel cost curves of the different power plants lie close together or intersect.  
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difference simply results in a higher relative difference if the system is smaller or if the load is lower 

(which have a lower absolute solution). Overall, results are close to optimal. Furthermore, the EPL 

method found a solution in all cases, while the MILP did not find a feasible solution in 2 cases within 

the provided time (3600 s). 

When having a detailed look at the solutions provided by the two algorithms, part of the differences 

originate from the fact that the EPL algorithm uses a single ranking throughout the entire simulation 

horizon. During specific moments of variable and low load, however, it might be beneficial to commit 

more expensive plants which have a lower minimum up time (e.g., peak plants (such as plant 8), 

which can be quickly turned on and off, although with a higher variable cost). Nevertheless, the 

performance of the EPL is satisfactory.  

Five day demand pattern 

The results for the 5 day case are also presented in Table 4. In 3 cases, the MILP did not converge to a 

feasible solution, while the EPL found a feasible solution in all cases. Furthermore, in a high number 

of cases, the MILP was restricted by the computation time limit of 3600 seconds. The current best 

values provided in these cases are possibly still far away from optimal, as the EPL method in some 

cases provides values which are significantly lower (up to almost 18%). The EPL method again proves 

to be very accurate, with differences mostly below 1%. The EPL stays overall below 1 s (not presented 

in the table), while the MILP often encounters the 3600 s time limit.  

[Table 4 about here] 

6 Conclusion 

UC models are required for optimizing the activation levels of power plants over time. A wide range 

of algorithms have been developed in the past to address this issue, with MILP currently being the 

preferential method. However, in various power systems across the globe, RES start to play an 

increasingly important role. In this regard, market models (relying on a UC algorithm) are required, 

effectively dealing with systems with low residual demand (e.g., for planning issues or policy 
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evaluation). This paper has demonstrated that MILP is not well suited for this setting (i.e., to deal with 

low residual demand). Hence, a new UC method is developed specifically to deal with low load 

situations. The method is based on a priority list which is used in a heuristic algorithm to come to a 

feasible solution, which is then potentially improved in further steps. Throughout the algorithm, 

specific focus is on feasibility towards the power plants’ minimum operating points and minimum up 

and down times (important for a low load setting).  

The developed EPL model is first used on a benchmark case which has been widely used in the 

literature and compared to MILP. The EPL turns out to be both very accurate and fast. 

In a second step, the developed EPL model is employed in a low demand setting (which is derived 

from the reference case), and compared to the MILP model in this same setting. The computational 

difficulties of MILP are demonstrated this way: MILP computation times increase heavily as the 

residual demand is being reduced, rendering this method (used as such) less suitable in this context. 

The EPL method on the other hand remains highly effective, both in outcome and especially in 

calculation time.  

The EPL is built up as a ‘once-through’ algorithm (consecutive steps, no iteration), which makes it 

fast, and to some extent modular and adjustable for additional constraints. An electric network might 

be incorporated by using the developed EPL as optimizer within an overall iterative algorithm 

(adjusting generation in different nodes to respect network constraints). An extension towards further 

optimization could be to combine the EPL with MILP, where the EPL would first identify a feasible 

good solution, which can then serve in a second step as starting point for the MILP optimization 

(especially relevant in cases where the MILP did not converge to any feasible solution).  
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Tables 

Table 1. Power system characteristics.  

  Pmax Pmin MUT MDT inist a b c hc cc tcold 

  [MW] [MW] [h] [h] [h] [$/h] [$/MWh] [$/MWh²] [$/h] [$/h] [h] 

plant 1 455 150 8 8 8 1000 16.19 0.00048 4500 9000 5 

plant 2 455 150 8 8 8 970 17.26 0.00031 5000 10000 5 

plant 3 130 20 5 5 -5 700 16.60 0.00200 550 1100 4 

plant 4 130 20 5 5 -5 680 16.50 0.00211 560 1120 4 

plant 5 162 25 6 6 -6 450 19.70 0.00398 900 1800 4 

plant 6 80 20 3 3 -3 370 22.26 0.00712 170 340 2 

plant 7 85 25 3 3 -3 480 27.74 0.00079 260 520 2 

plant 8 55 10 1 1 -1 660 25.92 0.00413 30 60 0 

plant 9 55 10 1 1 -1 665 27.27 0.00222 30 60 0 

plant 10 55 10 1 1 -1 670 27.79 0.00173 30 60 0 

 

Table 2. Hourly electricity demand.  

hour [h] 1 2 3 4 5 6 7 8 9 10 11 12 

demand [MW] 700 750 850 950 1000 1100 1150 1200 1300 1400 1450 1500 

hour [h] 13 14 15 16 17 18 19 20 21 22 23 24 
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demand [MW] 1400 1300 1200 1050 1000 1100 1200 1400 1300 1100 900 800 

 

Table 3. Objective and computation time of the developed EPL algorithm and the MILP model (with optimality gap 

equal to zero and to 0.5%). 

  total cost [$] computation time [s] 

  EPL MILP MILP EPL MILP MILP 

# units    opt gap = 0 opt gap = 0.5%   opt gap = 0 opt gap = 0.5% 

10 563,977 563,938 564,672 0.01 1.2 1.0 

20 1,124,481 1,123,308 1,125,721 0.01 5.9 2.2 

40 2,246,926 2,242,609 2,246,243 0.02 3139 3.6 

60 3,366,240   3,367,262 0.03   5.1 

80 4,489,342   4,488,560 0.04   7.0 

100 5,609,109   5,609,210 0.06   7.6 

 

Table 4. Relative difference [%] between EPL and MILP objective, together with computation time of MILP, for the 

1 day (FD 0 – 1.5) and 5 day (FD 0 - 1) low demand simulations. 

  
MILP computation time [s] 

  
Relative difference EPL - MILP 

    

  1 day demand pattern   1 day demand pattern 

# units FD 0 FD 0.5 FD 1 FD 1.5   FD 0 FD 0.5 FD 1 FD 1.5 

10 1.1 1.2 1.2 8.0   -0.12% 0.45% 0.15% 2.00% 

20 2.0 11.5 9.9 3600.0*   -0.11% 0.69% 0.26% 1.70%* 

40 3.5 21.7 781.1 3600.0*   0.03% 0.53% 0.43% 1.83%* 

60 5.1 177.2 3549.1  -   -0.03% 0.44% 0.46%  - 

80 7.0 75.7 1133.6  -   0.02% 0.52% 0.48%  - 

100 7.7 101.3 230.0 3600.0*   0.00% 0.46% 0.45% 1.69%* 

  5 day demand pattern   5 day demand pattern 

# units FD 0 FD 0.5 FD 1      FD 0 FD 0.5 FD 1   

10 3.7 9.0 3600.0*      -0.10% 0.31% 1.85%*   

20 6.6 1944.7  -      0.01% 0.29%  -   

40 41.3  - 3600.0*      0.24%  - 0.58%*   

60 860.2  - 3600.0*      0.06%  - 0.75%*   

80 3273.7 3600.0* 3600.0*      0.22% -17.91%* 0.25%*   

100 2616.5 3600.0* 3600.0*      0.32% -17.96%* 0.60%*   

The cases marked by a * indicate that the MILP was bounded by the imposed computation time limit of 3600 seconds. In these cases, the 
current best solution is provided, but this solution is not guaranteed to lie within the optimality gap of 0.5%. In 5 cases no solution was found 
by the MIP solver within the provided time (3600). The EPL method found a solution in all cases. A positive relative difference indicates a 
better solution by MILP, a negative value indicates a better solution by EPL. Difference with the benchmark case (Section 5.1) can occur (1 
day demand pattern, FD = 0) as downward reserves are now included, and the EPL is now run for three different values of Gi retaining only 
the best solution.  
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Figure captions and Figures 

 

Figure 1. Flow chart of the newly developed EPL algorithm. 

 

 

Figure 2. Power plant fuel cost over operating range, presented for two different power plants. 
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Figure 3. Flow chart of the correction in activation levels to respect minimum up and down times. 

 

 

Figure 4. Different demand profiles and RES profile, in the 1 day setting. 
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 ut(i,j) < FMU·MUTi 
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Update current up ut(i,j) and down times dt(i,j) 

Step 2: Correct for minimum down times:  
Turn on plant i in periods j where dt(i,j) < MDTi  if feasible 

towards minimum generation; if not feasible, turn plant on in 
adjacent periods such that new dt(i,j) = MDTi .  

Update current up ut(i,j) and down times dt(i,j)

Step 3: Correct for minimum up times:  
Turn on plant i in adjacent periods of j where ut(i,j) < MUT

i
  if 

feasible towards minimum generation and new down times; if not 
feasible, turn plant off in periods j.  

Update current up ut(i,j) and down times dt(i,j)
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Figure 5. Different demand profiles and RES profile, in the 5 day setting. 
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